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ABSTRACT 

An experimental study was performed to examine the effects of multiple extra rates 

of strain imposed on a turbulent boundary layer. This study is motivated by the necessity 

to develop predictive models of momentum and heat transport to facilitate design of 

turbomachinery, especially in the leading edge region of inlet guide vanes. The strain rates 

considered in the simplified experimental configuration resulted from wall curvature and 

axial pressure gradient. The effects of these strains on the transport of turbulence were 

studied for various combinations of strong and moderate curvature coupled with favorable 

and adverse pressure gradients. Extensive laser Doppler velocimetry measurements were 

made in a low-speed water channel, with an ability to resolve the near-wall region. Mean 

velocities, Reynolds stresses^and production terms were computed from the measurements. 

Time-resolved velocity records were used to infer turbulent burst period and ejection 

duration using the uv2 quadrant technique, with grouping. The results revealed that the 

strain rates interacted nonlinearly and that the rate of application was at least as important as 

the magnitude of the applied strains. The friction velocity provided appropriate scaling for 

Reynolds stresses in the inner layer, but outside of the logarithmic layer large changes 

caused by the extra strains were not compensated by this scale. An analytical framework 

based on the orientation of the principle axes of the strain rate and Reynolds stress tensors 

was evaluated. 



CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction 

There are many practical flows of engineering interest which are influenced by 

multiple, interacting strains. For example, the momentum and heat transfer mechanisms in 

turbomachinery are highly complex due to curved surfaces/low aspect ratio passages and 

streamwise and spanwise strains. In Figure 1.1, a schematic of a typical blade passage is 

depicted with the emphasis on the surface curvatures, the leading edge of the turbine blade 

and the changes in the cross-sectional area between the blades. With the desire to achieve 

higher thrust-to-weight ratios in turbomachines, it has become increasingly important to 

understand the fundamental mechanisms of momentum and heat transfer because of the 

required higher turbine inlet temperatures. Other examples of highly complex thermal 

systems include internal combustion (I.C.) engines as well as several external flow 

situations such as submersibles, aviatory vehicles, et cetera. 

The hierarchy of turbulent flows begins with isotropic turbulence, then 

homogeneous but non-isotropic flows without a mean velocity gradient to a plane strain 

acting on initially isotropic turbulence (see Gence and Mathieu, 1979). In the latter case, the 

principal axes of the Reynolds shear stress tensor coincide with those of the mean rate of 

strain. The next step in the hierarchy of turbulent flows involves the action of a constant 

shear on an initially isotropic turbulence, where the mean gradient is compounded by a pure 

plane strain associated with mean rotation. In this case, the principal axes of the Reynolds 

stress tensor are not aligned with those of the strain rate tensor, because of the mean 

rotation. An overview of the different complexities in turbulent flow is shown in Figure 

1.2. 

The effects of single extra strain rates on the structure of a two-dimensional 

turbulent boundary layer (TBL) have been thoroughly studied. However,, turbulent flow 

fields that involve extra rates-of-strain such as streamwise curvature or lateral divergence 

can not be predicted with acceptable accuracy by the same methods that were developed for 

classical shear layers (see Bradshaw, 1975). The TBL developing over a curved wall is 

considered to be a complex turbulent flow, since an "additional strain" associated with 

curvature of the mean streamlines is added to simple shear. Bradshaw (1973) defined an 

extra strain rate as any rate-of-strain component, denoted in general by the symbol e, other 



than the a simple shear  dV/dy.  In a curved shear layer the extra rate-of-strain is 

e = dV/dx in (x,y) coordinates, or e = -U/(R + n) in (s,n) coordinate system. 

A number of researchers have studied the influence of additional rates of strain, e.g. 

convex and concave curvature (cf. So and Mellor, 1973; Gillis and Johnston, 1983; Muck 

et al, 1985; Barlow and Johnston, 1988a, b), as well as adverse and favorable streamwise 

pressure gradients, (cf. Kline et al., 1967; Narashimha and Sreenivasan, 1979; White and 

Tiederman, 1990; and Nagano etal, 1991). Even though the response in laminar flows to 

multiple strain rates can be expected to obey simple mechanical laws for combinations of 

strains in a Newtonian fluid, the effects of the individual strain rates in the presence of 

turbulence may not be supersposable in a linear fashion, since turbulent motions are 

affected over all scales. Thus, there remains a significant need for detailed experimental 

studies of the response and downstream development of a TBL subjected to multiple strain 

rates. 

1.2 Literature Review 

Several aspects of complex turbulent flows have been studied extensively, and are 

well known. While an exhaustive review of all complex flow literature is not feasible 

within the contraints of this report, this section will summarize research efforts in the area 

of streamline curvature, streamwise pressure gradients and a few selected attempts of 

investigating the effects of multiple strain rates on the turbulence structure. 

1.2.1 Streamline Curvature 

Streamline curvature effects have been extensively studied for about three decades. 

The emphasis has been on the experimental exploration of how streamline curvature (both 

convex and concave) affects the turbulence structure of both external and internal flow 

fields. Table 1.1 summarizes some groundbreaking work done in this area. Bradshaw 

(1973) noted in his review of streamline curvature, that the effects of extra strain rates are 

an order of magnitude greater than would be predicted by a straightforward extension of 

simple shear layer calculations. Here, the extra rate of strain is 9V / 3x = -U / Rst, where 

Rst is the streamline curvature. The interpretation problem of the unexpected influences of 



the extra rates of strain due to streamline curvature arises from the fact that the extra strain 

rate dV/dx = |o(5/R)} 9U/9y, whereas the production term (Py) of the Reynolds stress 

transport equations is usually an order of magnitude larger than the advection term (Ajj), or 

in more general terms Py ={0(L/8)} Ay (van den Berg, 1984), where L is a typical 

streamwise length scale. The mismatch between the orders of magnitude of these terms and 

the relatively large changes in the production due to small extra rates of strain is attributed 

to the pressure-strain term, <|)y. Using van den Berg's notation, the transport equation for 

the turbulent stress component u;Uj is written as: 

Ay=Py-Ay-Dy+<J)y (1.1) 

where Ay is the diffusion term and Dy the dissipation term. Note that the dissipation term 

only accounts for the final (isotropic) stage in the turbulent scale cascade process, where 

the smallest eddies of the flow dissipate their energy by viscosity. 

In a more recent review on the effects of streamwise curvature effects in turbulent 

boundary layers by Patel and Sotiropolous (1997), the authors analyzed a number of 

experiments to elucidate the effects of curvature and to evaluate turbulence models to 

predict transport of momentum and heat in turbulent boundary layers. Their main 

conclusion was that, in spite of the high level of effort that has been devoted to this subject, 

little progress has been made in quantifying all of the effects of streamwise curvature. As 

far as the effects of convex curvature are concerned, the authors concluded that the usual 

integral parameters (H and cf), profiles of the mean velocity and some key turbulence 

quantities (i.e. TKE, turbulent shear stress, and ratio of normal to streamwise turbulent 

stresses) are sufficient to observe the effects of convex curvature. 

An additional problem with the extra strain rate due to streamline curvature dV/dx, 

is that the velocity derivative is not Galilean invariant, because it is referred to axes aligned 

with the streamwise velocity (Spalart and Shur,  1997). It is impossible to interprete 

dV/dx as an "extra rate of strain", because it has been shown to have a significant effect 

on the turbulence (Bradshaw, 1973), even though values of 3V/3x are much smaller than 

that of 8U/3y and they are equal partners of the spanwise component of vorticity, coz. 

Therefore, it becomes more appropriate to introduce a Galilean invariant measure in order 

to develop more general turbulence problems. 



As reported in previous studies (e.g. So and Mellor, 1973 and Gillis and Johnston, 

1983), a significant favorable pressure gradient occurs on the convex wall at the onset of 

curvature, where the radius of curvature changes from infinity to a finite value. This 

behavior can be predicted by combining the Euler equations in the streamwise and wall- 

normal direction. 

ap_   „av_ p^(v2) 
3s 3s       2   3s 

r2 
|p=Pr => v2=^ o.2.b) 
3n    K R p 3n 

Combining equations 1.2.a and 1.2.b yields: 

3P _ _}_±(R dP} _ _ RJL(<& 
3s ~   2 3s I    3n J       2 3s I 3n 

(1.3) 

Equation 1.3 shows how the streamwise pressure gradient arises as a consequence of 

changes in the radius of curvature. 

One of the first thorough experimental investigations of turbulent flow over curved 

surfaces with strong curvature (6o/R = 0.10, where 50 is the initial boundary layer 

thickness upstream of the onset of curvature and R is the radius of curvature) was 

performed by So and Mellor (1973). On the convex wall it was found that the turbulent 

boundary layer was two-dimensional and that the turbulent shear stress vanished in the 

outer half of the boundary layer. A zero streamwise pressure gradient was maintained over 

the convex wall by carefully contouring the opposite wall except immediately downstream 

of the onset of curvature, where locally a favorable pressure gradient prevailed. 

Two experiments with different strengths of curvature (So/R~0.10 and 0.05) 

were performed by Gillis and Johnston (1983) in a low-speed wind tunnel to study the 

turbulence structure of the boundary layer that formed over the convex wall, and after 90° 

of turning, its recovery behavior on a flat surface. The streamwise pressure gradient was 

forced to be zero over the entire test surface, requiring careful design of the wall opposite 

the curved test wall. Consistent with the results of So and Mellor (1973), they found that 

the primary Reynolds shear stress was diminished in the outer region of the turbulent 

boundary layer, and that the shear stress profiles for both experiments collapsed when 



-üv/u^ was plotted versus distance from the wall normalized with the wall radius of 

curvature, y/R, indicating that the radius of curvature influences the active turbulence 

length scales in curved boundary layers with strong curvature. Here, -uv is the primary 

Reynolds shear stress (divided by the fluid density p) and uT is the shear velocity defined 
1   I o 

as uT =(xw/p) . The active shear-layer in the downstream region was thinner than its 

initial value at the onset of curvature. 

The structure of mildly curved convex and concave turbulent boundary layers (50/R 

= ± 0.01) was studied by Ramaprian and Shivaprasad (1978). With detailed turbulence 

measurements, they found that even mild curvature has very strong effects on the various 

aspects of the turbulence structure. The turbulence energy production rate was significantly 

affected by convex curvature, where the production mechanism is confined to a region very 

close to the wall. In addition, convex curvature not only suppressed both the amount of 

outward diffusion of turbulent kinetic energy (TKE) from the wall region and the extent of 

the region which receives TKE from the wall region, but also the integral time scales were 

strongly affected especially by convex curvature. The authors concluded that the structure 

(size, orientation and decay time) of the energy containing eddies is highly sensitive to wall 

curvature. 

The effect of mild convex curvature (80/R ~ 0.01) was also investigated by Gibson 

et al. (1984), where four non-zero components of the Reynolds stress tensor and three 

triple velocity products were obtained at different downstream positions of an open-return 

blower-type wind tunnel. The turbulence intensities, shear stress and wall friction were all 

reduced by approximately 10% relative to their flat-plate values and the triple products were 

halved in the presence of mild convex curvature. Apparently, the initial response of the 

TBL to the change in wall curvature was triggered by the effects of the extra strain, which 

resulted in the reduction of the rate of shear stress production from the mean flow. Because 

the radial strain rate ratio, Srad =(U/r)/(3U/3y), increases with distance from the wall 

(y), the effect of the extra strain rate due to curvature on the shear stress is most effective 

outside the near-wall region. 

In order to clearly distinguish between turbulent and non-turbulent flow regimes in 

a TBL over a mildly curved convex wall (80/R ~ 0.01), conditional-sampling techniques 

were used in an investigation by Muck et al. (1985). In conjunction with the work by 

Hoffman etal. (1985), who studied concave curvature effects, it was demostrated that the 



effects of convex (stabilizing) and concave (destabilizing) curvature are completely 

different. The most obvious evidence in these two studies was the very rapid response of 

the TBL to the application or removal of convex curvature, as compared to the slow 

reaction to concave curvature. This information was considered crucial for refining existing 

calculation methods for turbulent flows with streamwise curvature. 

The (lack of) applicability of the "log-law" in TBLs with one or more extra rates-of- 

strain has been widely discussed. In a comprehensive study by Gibson (1988) on the 

effects of surface curvature, it was shown that although the logarithmic region existed for 

the mean streamwise velocity component, the "log-law" constants could be different from 

the standard values (1/0.41 for the slope and 5.0 for the intercept). In his work, Gibson 

(1988) suggested a value of 5.78 for the intercept, while the von Kärmän constant 

remained unchanged. A more extensive discussion of this issue can be found in Schwarz & 

Plesniak (1996b). 

In an extensive visual study on the effects of stabilizing convex curvature (with 

80/R ~ 0.05), Chiwanga and Ramaprian (1993) showed that the large-scale structures were 

highly attenuated by convex wall curvature, confirming that the curved TBL is dominated 

by smaller scale motions. The attenuation of the large-scale structures was expected to 

result in a substantial loss of upstream history of the boundary layer. In the recovery zone, 

the TBL tried to reorganize itself, but approximately 33 80 were required after the end of 

curvature to identify large-scale structures again. 

A thorough study of the effects of concave curvature on the turbulence structure 

was conducted by Barlow and Johnston (1988a and 1988b) in a low-speed, free surface 

water channel using flow visualization and two-component laser-Doppler velocimetry. The 

strength of the concave curvature was moderate at S0/R ~ 0.06. The overall results showed 

that large-scale motions were amplified by the destabilizing curvature in a two-stage 

process. The new eddy structure which developed over at least 20 80 downstream of the 

onset of curvature enhanced the mixing across the boundary layer, which could be seen in 

the spectral measurements and an increase in the correlation coefficient. For the natural 

flow experiment, the large-scale did not have a preferred spanwise location and the TBL 

remained nearly two-dimensional in the mean. On the other hand, in the presence of 

upstream vortex generators, a fixed array of longitudinal roll cells were induced allowing 

measurements to be made in large inflow and outflow region, respectively. Under these 

conditions, the bursting process and the uv correlations were suppressed in the inflow 
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regions, whereas the opposite trend was observed for the outflow regions. A turbulence 

model for concave boundary layer flows must accurately account for the slow development 

of the large-scale structures. 

1.2.2 Streamwise Pressure Gradients 

The level at which streamwise pressure gradients interact with turbulent flow is not 

well understood. For example, the absolute turbulence properties appear to be only slightly 

affected by pressure gradient (Bradshaw, 1994), because the Reynolds stress transport 

equations do not explicitly contain the mean pressure. The only terms that are directly 

affected are the y-components diffusion terms. 

The influence of additional strain rates due to adverse and favorable streamwise 

pressure gradients has been studied extensively. Both adverse and favorable streamwise 

pressure gradients can have significant effects on the mean flow and the turbulence 

quantities. Several conditions have been shown to destroy the log-law region, i.e. strongly 

accelerating flow leading to relaminarization (cf. Blackwelder and Kovasznay, 1972; and 

Narashimha and Sreenivasan, 1983), increasingly, adverse, non-equilibrium pressure 

gradients (cf. Nagano etal, 1991), and TBLs with alternating pressure gradients (cf. Tsuji 

andMorikawa, 1975; and Bandyopadhyay and Ahmed, 1993). Table 1.2 is a summary of 

a few selected publications in this area. Adverse pressure gradient can destroy the 

logarithmic region and significantly change higher-order velocity moments as reported by 

Nagano et al. (1991), although it is unclear whether or not their turbulent boundary layer 

was in equilibrium. On the other hand, in cases of equilibrium boundary layers, the validity 

of the "log-law" was established by White & Tiederman (1990) and Koskie (1991). 

In the review article by Narashimha and Sreenivasan (1979), the authors describe 

the influence of highly accelerated flows on the mean statistics and turbulence structures in 

the boundary layer, especially its tendency of reversion to laminar flow. They suggest a 

two-layer model, in which the turbulence in the outer portion of the boundary layer is 

rapidly distorted and the Reynolds shear stress is nearly frozen. The viscous region 

exhibits random oscillations in response to the forcing provided by the remainder of the 

original turbulence. In this situation, reversion is a result of the slowly responding 

Reynolds stresses to the dominating pressure forces in the outer region, accompanied by 

the generation of a new laminar sub-boundary layer which is stabilized by the strong 

acceleration. 



In a groundbreaking experiment by Kline et al. (1967), the near-wall structure of a 

turbulent boundary layer with zero, adverse and favorable streamwise pressure gradients 

was investigated. They identified motions in the viscous sublayer giving rise to "low-speed 

streaks". These streaks were found to undergo a violent breakup process due to an 

instability mechanism, resulting in ejections of low-speed fluid from regions very near the 

wall. This rather complex behavior, known as a turbulent burst, is significant in the 

production of turbulence energy and its exchange with the outer portions of the boundary 

layer. Additional details concerning the TBL structure and bursting phenomenon are given 

by Robinson (1991). While adverse pressure gradients (APG) are known to make bursting 

more frequent and violent, favorable pressure gradients (FPG) reduce its frequency, and, if 

sufficiently accelerated (k = 3.5-lCT6, where k = v/U2 -dUe/ds is the acceleration 

parameter, and Ue is the streamwise velocity at the edge of the boundary layer), the 

bursting process ceases, leading to reverse transition and relaminarization. 

In a study by Narayanan and Ramjee (1969) concerning the influence of FPG on 

reverse transition in a flat plate boundary, mean and fluctuating streamwise velocity 

profiles, as well as the wall shear stress were measured in a "two-dimensional turbulent 

boundary layer. The breakdown of the "logarithmic law" occurred at a value of the pressure 

gradient parameter AP = v/(pu^)-dP/ds = -0.02, where v is the kinematic viscosity and 

dP/ds is the streamwise pressure gradient. This is associated with thickening of the linear 

sublayer, which occurs before the relaminarization of the mean velocity profiles and is a 

first sign for the onset of the reverse transition process. The development of the boundary 

layer downstream of this point was signified by: (1) increase in the shape factor H = 8* /0, 

where 8* is the displacement thickness and 9 is the momentum thickness of the turbulent 

boundary layer, (2) decrease in the skin friction coefficient cf = Tw/ — pU^  , where xw 
v2        ) 

is the wall shear stress and U„ is the free-stream streamwise velocity; and (3) similarity of 

the streamwise Reynolds normal stress profiles, u2, in the turbulence decay region. 



1.2.3 Multiple Strain Rates 

The response of a TBL to multiple curvatures (convex and concave) and pressure 

gradients (favorable and adverse) has been studied by Bandyopadhyay and Ahmed (1993) 

in an S-shaped duct. The formation of internal layers was detected at the convex curvature 

junctions. According to a criterion determined by Baskaran et al. (1987), an internal layer 

grows    when    the    curvature    parameter     Ak+ = ARv/ux > 0.373 xlCT4,     where 

AR = (l / R2 -1 / Ri), Rj and R2 being the radii of curvature upstream and downstream of 

the onset of curvature, respectively. Bandyopadhyay and Ahmed (1993) also found that the 

effect of curvature dominates the accompanying sequences of streamwise pressure 

gradients. They reached this conclusion after carefully analyzing the skin-friction 

distributions on both walls and comparing them to the corresponding applied curvatures 

and streamwise pressure gradients. 

An experimental study by Webster et al. (1996) examined a TBL over a surface 

bump. The initially flat plate, zero pressure gradient TBL was subjected to alternating 

concave and convex curvature, as well as adverse and favorable pressure gradients. The 

surface discontinuity near the leading edge of the bump (concave to convex) triggered an 

internal layer which grew rapidly because of a strong adverse pressure gradient. On the 

other hand, it was shown that the effect of convex curvature was small. Even though this is 

one of the few recent experimental studies concerning multiple pressure gradients, the 

applied strengths of the radial or streamwise pressure gradient was not independently 

controllable. 

The interaction of multiple applied strain rates (i.e. in the radial and streamwise 

direction) in turbulent shear layers is a topic of great interest. Maxey (1982) introduced the 

concept of an effective strain rate, oceff, and showed that it is possible to write a transport 

equation for this quantity assuming homogeneous turbulence. Using the analogy with 

energy decay of homogeneous isotropic turbulence and introducing a large-eddy distortion 

time scale, TD =L/ 8D^/q2   , where L is the integral length scale, 8D is a constant and 

^q2 is the root-mean square (RMS) of the trace of the Reynolds stress tensor, the 

following transport equation is obtained: 



9cceff _ 9U | 3 f     da,  ^ 
9t       9y    dyy       3y 

■c    ~-eff 

v      u> y 

aeff 

TD 

10 

(1.4) 

This equation includes a diffusion term which accounts for the transport of effective strain 

by the advection of turbulent eddies, where ED is the diffusion coefficient. However, this 

approach is applicable only in the in the case of single imposed strains or distortions, 

whereas in the case of a complex flow with multiple interacting strains, no formal theory 

yet exists. In addition, it is not clear how the different rates of application of a newly 

introduced strain rate affects the momentum transport inside a TBL. 

In a more recent approach for combining multiple strain rates, Spalart and Shur 

(1997) present an equation for the Lagrangian derivative of the direction of the strain-rate 

tensor principal axes with respect to an inertial reference frame as follows: 

Da    „ 1 
 = Q + - 
Dt 

DS12 DS„ 

^T^p   Dt   -°12   Dt (1.5) 

where Sy is the strain rate tensor defined with respect to the calculation reference frame, 

which may be rotating at the rate Q. The situation for a two-dimensioanl fluid element 

exposed to strain-rate field is depicted in Figure 1.2 using streamwise coordinates s and n, 

where Sn = Sss, S22 = Snn, and S12 = Ssn, respectively. Since it is the Lagrangian 

derivative of a quantity which is defined with respect to an inertial frame, Da/Dt is 

Galilean-invariant, unlike the traditional rate of strain parameter such as -U/r. This 

approach is based on the hypothesis that turbulence is enhanced under weak rotation or 

curvature, if the Reynolds stress principal axes lead the strain rate axes, and vice versa. 

With this hypothesis, the rotation and curvature effects are unified. 

1.3 Engineering Relevance 

The flow inside a turbomachine invariably involves multiple pressure gradients. 

The diverse geometrical features of axial, radial and mixed flow machines bring about the 

simultaneous action of pressure gradients in different directions in the flowfield. Therefore, 

such flows have stagnation pressure that are non-uniform both in magnitude and direction. 
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At the solid walls, boundary layers arise due to viscous effects in the fluid. These boundary 

layers become subjected to the action of multiple pressure gradients and they may be 

laminar, transitioning or fully turbulent. The development of the boundary layers in the 

presence of secondary flows is of significant engineering interest in the design of 

turbomachinery (cf. Bradshaw, 1975, 1976 and 1997; and Atkins & Smith, 1982). One of 

the chief problems in the case of turbines is the determination of convective heat transfer 

between the working fluid and the material surfaces. Therefore, it is of considerable 

importance to establish a relation between momentum and heat transfer in the complex, 

three-dimensional boundary layer (i.e. Becker & Rivir, 1979; and Blair, 1983). 

1.4 Summary and Objectives 

In the reviewed literature on complex turbulent flows, the problem of the response 

of a turbulent boundary layer to multiple strain rates does not appear to have been explored 

extensively. However, there is a good understanding of how single imposed extra strain 

rates affect turbulence transport. It is well known that convex curvature immediately 

reduces the extent of the active shear layer region and hence suppresses the momentum 

exchange between the inner and outer layer, whereas concave curvature increases radial 

mixing but it is significantly slower to respond downstream of the onset of curvature than 

convex curvature. It has also been shown that streamwise pressure gradients influence the 

turbulence structure. 
Despite a number of experimental studies on flows with multiple strain rates, there 

still is a lack of detailed, near-wall structural information concerning TBLs that experience 

controlled, multiple pressure gradients. Previous studies have not addressed the 

fundamental issue of whether or not multiple strain rates interact with each other within the 

turbulent boundary layer. Therefore, the major objective for this study is establish, through 

experiments and analysis of data, the changes in the flow structure in a flow exposed to 

multiple pressure gradients, and thereby arrive at a mechanistic model of interactive 

processes, that is applicable more generally. Subsequently, it becomes necessary to resolve 

the following issues: 

• To determine whether or not the different strain rates interact with each other 

• To determine whether the boundary layer reaches a state of similarity 

• To determine the response of the turbulent boundary layer immediately upstream 
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and downstream of the onset of newly introduced strains (radial and streamwise) 

»To investigate how different portions of the turbulent boundary layer respond to 

multiple strain rates 

' To determine the response of the turbulence production processes to multiple 

strain rates 

• To investigate the feasibility of a total strain parameter and its relevance to 

turbulence modeling 
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Figure 1.1       Schematic of typical flow passage in turbomachinery 
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Figure 1.3       Two-dimensional fluid element showing components of strain rate tensor 
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CHAPTER 2. EXPERIMENTAL APPARATUS AND PROCEDURES 

2.1 Water Channel 

The experiments were performed in the Purdue multiple strain rate facility, a 

recirculating water channel (shown schematically in Figure 2.1) driven by four centrifugal 

pumps each rated at 5.7 xlO-3 m3/s (90 gpm). Two interchangeable curved test sections 

were employed to impose moderate and strong convex curvature. Softened and filtered 

water entered the straight development section through a series of screens, into a smooth 

two-dimensional contraction section followed by a honeycomb section to reduce large-scale 

vortical motions in the entrance region. An equilibrium turbulent boundary layer developed 

on the smooth wall of the straight upstream section (2.46 m long for test section 1 and 1.95 

m long for test section 2). The spanwise dimension of all test sections was 200 mm (z- 

direction) and their width (y-direction) was 100 mm at the boundary layer trip and 

approximately 110 mm at the entrance into the curved test section, s=0. 

A flexible wall (constructed from 3.2 mm thick Lexan ) was placed between the 

measurement wall and opposite side wall to adjust the cross-sectional area, and hence to 

impose the streamwise pressure gradient. The primary geometric parameters for both test 

sections are shown in Figure 2.2. The flexible wall was adjusted to yield a zero pressure 

gradient (ZPG) in the straight section and a zero, adverse (APG) or favorable pressure 

gradients (FPG) of different strengths in the curved test section. The width of the test 

section downstream of the onset of curvature was different for each streamwise pressure 

gradient. The exact wall shapes were measured and recorded. Figure 2.3 schematically 

illustrates the shapes of the flexible wall used to establish the desired streamwise pressure 

gradient conditions. 

As shown in chapter 1, a streamwise change in the wall-normal pressure gradient 

induces a streamwise pressure gradient due to the discontinuity in the radius of curvature. 

By increasing the cross-sectional area upstream of the straight curvature junction, this effect 

was counteracted to minimize the influence of the locally strong FPG. 

For test section 1 (TS1), the boundary layer thickness at the exit of the upstream 

straight section was 5o«40mm, resulting in a curvature parameter of 8o/R = 0.10, 

which comprises a strong curvature. For test section 2 (TS2), the initial boundary layer 

thickness was  80=35mm, which resulted in a curvature parameter of  8o/R = 0.05 
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(moderate curvature). Typical values of the curvature parameter Ak+ for each test section 

were: Ak+ = 6.20xl0:5 for TS1 and Ak+ = 3.54xl0"5 TS2, using inner variables evaluated 

just upstream of the onset of curvature under ZPG conditions. 

2.2 Measurements Techniques 

2.2.1 Pressure Gradient 

Pressure taps installed along the convex wall were used to measure the imposed 

streamwise pressure gradients with a Gilmont micro-manometer. The manometer 

working fluid was carbon-tetra-chloride (CC14 with S.G. = 1.584) which results in a 

sensitivity of ±1 Pa. The pressure tap spacing was varied between 25.4 mm (near the 

onset of curvature) and 101.6 mm further downstream in the curved test sections. The 

exact locations of all pressure taps are listed in Tables 2.1 and 2.2. 

2.2.2 Two-component LDV 

A two-component laser-Doppler velocimeter (LDV) system was employed for 

simultaneous measurements of the streamwise and wall-normal instantaneous velocity. The 

transmitting optics of the two-component, three beam LDV system consisted of a Thermo 

System Incorporated (TSI ) model 9100-8 velocimeter modified to measure velocity 

components at ±45° to the mean flow direction in TSI. A different configuration was used 

for the velocity measurements in TS2, where the three-beam system was oriented to 

directly measure streamwise and wall-normal velocity components. Using a pair of Bragg 

cells, both monochromatic beams were frequency shifted at 40 MHz to minimize fringe 

biasing. 

The transmitting and receiving optics are shown schematically in Figure 2.4. 

Operating in the forward scattering mode, near-wall measurements were made possible by 

inclining the optical axis of the transmitting side by approximately 3° with respect to the 

measurement wall. The transmitting lens, transmitting mirror and the entire receiving 



26 

optical train were mounted as one assembly which translated in the direction normal to the 

measurement wall (y-direction). A Mitotoyo dial gage model. 3058-11 with a resolution of 

±0.01 mm was used to measure the probe volume translation. The location of the wall was 

approximated to within three viscous units by visually observing the crossing of the 

transmitting beam on the measurement wall. This position was corrected in the post- 

processing stage using the inferred wall shear velocity from the Clauser method and an 

explicit equation for the law of the wall given by Liakopolous (1984). This correction was 

usually less than two viscous units. 

The probe volume was 45 |xm in diameter and had a spanwise extent of 

approximately 920 (im, which corresponded to 2 and 40 viscous units, respectively, when 

normalized with inner variables, ux and V. In order to enhance the spatial coincidence of 

the two probe volumes, a 50 |im pinhole was inserted into the receiving optics, which 

reduced the effective probe volume length to 12 viscous units. The relative position of the 

probe volume with respect to the measurement wall was first approximated by observing 

the beam crossing and its reflection from the wall through the receiving optics eyepiece. 

Using this method usually placed the probe volume within half probe volume diameter (one " 

viscous unit) relative to the wall (y = 0.0 mm). An explicit relationship for the mean 

streamwise velocity component, U+ = f(y+), suggested by Liakopolous (1984) which 

represents the near-wall behavior throughout the logarithmic region very well was used for 

a final wall correction. Spatial and temporal measurement coincidence were achieved by 

carefully aligning the transmitted beams and the receiving optics, and by setting a 

coincidence window on the counter processors (TSI 1980B) to ensure that the accepted 

signal on both channels originated from the same scattering particle passing through the 

probe volume. The flow was seeded with 0.3 |im diameter fat particles from homogenized 

cream at a concentration of approximately 2.5 ml / m . 

In order to calculate reliable statistics (mean and higher order moments), various 

numbers of statistically independent velocity realizations were required.. For the two- 

component velocity profiles, a minimum of 10,000 realizations were acquired for each 

velocity component. Figure 2.5 depicts a block diagram of the data acquisition system used 

for the coincident two-component LDV data. The downmixed, high-pass filtered Doppler 

signal entered a pair of TSI 1984 input conditioners, where typical signal-to-noise ratios 

(SNR) were estimated using an oscilloscope. A temporal coincidence window estimated 

from a typical particle transit time through the probe volume (e.g. 40 |is) was set on the 
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1998A TSI master interface, which controlled the combined data transfer of both velocity 

words to the MassComp® 5520 computer via an TSI interface. 

Velocity bias occurs in LDV measurements of a highly turbulent flow, due to the 

fact that the probability of measuring a high velocity particle is higher than that of 

measuring a low velocity particle (McLaughlin and Tiederman, 1973). This effect results in 

significant measurement error, especially near the wall, where the turbulence intensities are 

highest. Velocity bias was minimized using the fixed-waiting-time sampling method. In 

this method the data acquisition system is inhibited for a fixed amount of time between two 

subsequent realizations. The Kolmogorov time scale is representative of the smallest 

(dissipation) scale of the flow. For the flow studied here, the Kolmogorov time scale was 

estimated by assuming that dissipation of turbulence kinetic energy (TKE) was equal to 

production at the production peak (at y+ = 10). The data validation rate was maintained 

(about five times) in excess of the greatest estimated Kolmogorov frequency of the flow 

and the inhibit time was more than ten times the inverse of the validation rate. 

The time-resolved measurements, necessary for bursting period analysis, consisted 

of 100,000 velocity realizations with the counter processors operating in the single-point 

per Doppler-burst mode. In this case, velocity bias was reduced by correcting the 

individual velocity measurements using a two-dimensional weighting factor as suggested 

by McLaughlin and Tiederman (1973). During these measurements, the particle arrival rate 

was maintained in excess of the wall strain rate, which is an approximation for the viscous 

frequency of the flow, fvis =3Ü/8y|w =u\l\, which for TSI was typically 1800 Hz for 

the zero, between 2400 & 2800 Hz for the favorable, and between 2700 & 650 Hz for the 

adverse streamwise pressure gradient cases. Note that for the APG case, convex curvature 

and streamwise pressure gradient have opposite effects in terms of stabilizing or 

destabilizing the flow, thus a wide range of wall strain rates results. For TS2, the typical 

values for the viscous frequency were 1600 Hz for ZPG, and 2900 Hz for the strong FPG 

case. 
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2.3 Data Reduction 

2.3.1 Velocity Statistics 

The calculation of the velocity statistics required special attention using the 

following procedure. First, the individual velocity realizations measured on each channel, 

Ujand U2were calculated. Due to a slight error of the relative beam pair alignment, each 

\J\, U2 pair was transformed into precisely orthogonal velocity components U, and U2 

using the following: 

' U1=UI (2.3) 

U2 = —!— U'2 —UJ (2.4) 
sin a tana 

In Equation 2.4, a is the angle between the measured velocity components as shown in 

Figure 2.6. 

The velocity statistics were first determined for the Ul and U2 velocities and then 

transformed to the laboratory coordinate system (streamwise and wall-normal direction) 

according to the following procedure. For any angle 0, calculated from the beam 

configuration, the streamwise and normal velocity components were determined from: 

U = U2cos0 + U,sine (2.5) 

V = U2 sin6-U, cos6 (2.6) 

These equations were substituted into the definitions of the Reynolds averaged statistics 

(Uj =Ui +Uj), which yielded the equations for the Reynolds normal and shear stress 

components as: 

uz =Uj sin e + u2cosz 6 + 2u!U2 sine cos 0 (2.7) 

v2 = uj2 cos2 6 + u2
2 sin2 e-2u7u^ sin0 cos6 (2.8) 

u^ = (u2
2 - u1

2)sinecose + u1u2(sin2 6 - cos2 e) (2.9) 
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Similarly, higher order moments (skewness, flatness and other triple products) were 

calculated from the two-component LDV data. These equations are given in section 2.3.3. 

2.3.2 Burst Detection 

The structure of turbulence in boundary layers has been studied extensively 

(Robinson, 1991, see Figure 2.7). One of the events associated with coherent structures is 

an ejection, or series of ejections comprising a turbulent burst. The bursting cycle is the 

main turbulence production mechanism (Runstadler et al, 1963). During an ejection event, 

the low-speed fluid near the wall undergoes a rapid acceleration away from the wall and 

mixes with the higher-speed fluid above the wall. Consequently, the ejection process is 

associated with a positive v-fluctuation (higher than the mean) and a negative u-fluctuation 

(lower than the mean). These characteristics led Lu and Willmarth (1973) to propose the 

second quadrant (uv2) burst detection technique for an Eulerian velocity probe. This 

detector triggers on large negative values of the instantaneous product of the streamwise 

and wall-normal velocity fluctuations when they occur in the second quadrant of the uv- 

plane, i.e. 

uv(t) < -H • uV and u(t) < 0 or v(t) > 0, (2.10) 

where H is a threshold specified by the user. The fact that a threshold independent range 

exists allows meaningful estimates of the mean time between bursts to be made. This 

detection method was chosen over single-component burst detection methods, e.g. the 

VTTA (Blackwelder and Kaplan, 1976) and modified u-level (Bogard and Tiederman, 

1986) techniques, because the uv2 method gives the best correlation between probe 

detections and visually observed ejections (Bogard, 1982). 

It was also necessary to group multiple ejections appropriately, depending on 

whether they originated from the same or from different bursts, through the use of a 

grouping time, xg. This grouping procedure was developed by Bogard and Tiederman 

(1986) and has also been used by other investigators (e.g. Barlow and Johnston, 1988b; 

and Schwarz and Plesniak, 1996a). Ideally, a histogram of the time between ejections 

would have two separate distributions; one for ejections from the same burst and one for 
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ejections from different bursts. In practice, there is some overlap between the two 

distributions. Ejections separated by T less than %„ are assumed to originate from the same 

burst, while those with longer separation times originate from different bursts. The 

appropriate grouping time for a given threshold can be determined using the histogram of 

the time between ejections plotted on a semi-logarithmic scale (see Figure 2.8). It is 

assumed that the distribution of times between ejections within the same burst and the time 

between detections from different bursts both decrease exponentially, yielding two linear 

regions with a region in between where the distributions overlap (not necessarily linear). 

The extrema of the overlap region are indicated by tj and x2 and the grouping time was 

chosen at the midpoint of the overlap region (White and Tiederman, 1990). Thus, the 

ambiguity in xg is half of the interval between %l and T2. The propagation of this 

ambiguity is the major contributor to the uncertainty in the mean burst period TB. This 

grouping procedure was repeated for ten different thresholds between 0.0 and 1.6 for each 

burst record. In Figure 2.9, the burst period is plotted as function of the detector threshold 

(H), and the threshold independent region is clearly evident. The reported time between 

bursts (TB) is calculated by simply averaging the values within the threshold independent 

range. 

2.3.3 Higher-order Moments and Deduced Quantities 

Higher order velocity moments were calculated to further analyze the turbulence 

data. The skewness and flatness (kurtosis) of the streamwise and wall-normal velocity 

—ö       '3 —X       /4 

components are defined as uiskew =u; /Uj     and  uiflat=Uj  /u;   ,  respectively. The 

resulting equations for these third and forth order moments in the laboratory coordinate 

system that were derived from the rotated reference frame are: 

u3 =u2
3cos36 + 3u1U22sin0cos2e + 3u1

2u2sin28cose + u1
3cos3e (2.11) 

v3 = u2
3sin30-3u1u2

2sin20cos0 + 3u1
2u2sin0cos20-u1

3cos30 (2.12) 

u4 = u2
4 cos4 0 + 4u!U2

3 sin 0 cos3 0 + 6u!2u2
2 sin2 0 cos2 0 (2.13) 

+ 4u!3u2 sin3 0 cos 0 + Uj4 sin4 0 
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v4 =u2
4sin4e-4u1

3u2sin0cos30 + 6u1
2u2

2sm2ecos2e (2.14) 

-4ujU2
3sin OcosO + u^cos 0 

2.4 Uncertainty Estimates 

The error analysis of the LDV data followed that recommended by Walker & 

Tiederman (1988) and Yanta and Smith (1973). The uncertainty in the estimate for 

statistical quantities depends on both the ensemble size and the RMS level for a mean 

quantity but it depends solely on the ensemble size for an RMS quantity. A 95% confidence 

interval for Gaussian (or nearly Gaussian) distributions was assumed (Kline & 

McClintock, 1953; and Moffat, 1988). The spatial absolute uncertainties were ±1 mm in 

the streamwise (s) and ±0.02 mm in the wall-normal (y) direction. 

Typical uncertainty bounds for the Reynolds stresses are shown in the upper right 

corner of the appropriate figures. Typical uncertainties on the RMS and mean velocities are 

on the order of the plot symbol sizes, i.e. less than 1%, except for the near-wall region 

(y+<10,  where  y+ = yuT/v is the inner normalized wall-normal coordinate).  For 

y+ < 10, the measured wall-normal RMS velocity component was significantly higher than 

several benchmarks, e.g. the direct numerical simulation data by Spalart (1988), and hence 

is omitted. The maximum uncertainty on the shear stress was typically 12 to 13% (for N = 

10,000) in the maximum stress region (y+= 40-80). Typical values for the relative 

uncertainties for the mean and RMS velocity components and for the primary Reynolds 

shear stress are listed in Table 2.3 for N = 20,000 at y+ -10 and 100. 

Uncertainty in the shear velocity is less than 1% due to the mean streamwise 

velocity measurements and approximately 5% due to the additional uncertainty introduced 

by the Clauser method, which has been used to infer the wall shear stress. Note that for 

flows with curvature and pressure gradient, the constants in the log-law may be different 

than the universal flat plate values (Gibson, 1988; and Moser and Moin, 1987). The 

uncertainty for the pressure gradient parameter is of the same order as the size of the 

corresponding plotting symbols (1.6% for k). 

The uncertainties associated with measuring quantities upon which the burst periods 

depend are on the order of 1 to 2%. However, due to the post-processing operations, i.e. 

choice of thresholds, and determining grouping times to discriminate between ejections 



32 

originating from the same or different bursts, the ambiguity in the absolute value of TB is 

typically between 15 and 20%. Thus, while the absolute magnitudes of burst period are 

uncertain up to 20%, all of the data sets were processed consistently to minimize the 

ambiguity and the trends exhibited are faithful to within the measurement uncertainty of 

2%. The normalized ejection duration Aig = ATEU^ /V was calculated from the individual 

time-resolved measurements for each threshold and its uncertainty is approximately 3.5%. 
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Table 2.1 Location of pressure taps for test section with strong curvature (80 / R = 0.10) 

Tap Number s - s0 [mm] «[°] 
1 -121 straight 

2 -90 straight 

3 -59 straight 

4 -28 straight 

5 20 2.9 

6 45 6.5 

7 70 10.0 

8 95 13.6 

9 120 17.2 

10 150 21.5 

11 200 28.7 

12 225 32.2 

13   ' ' 250 35.8 

14 275 39.4 

15 300 43.0 

16 350 50.1 

17 375 53.7 

18 400 57.3 

19 450 64.5 

20 500 71.6 
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Table 2.2        Location of pressure taps for test section with moderate curvature 
(80/R*0.05) 

Tap Number s - s0 [mm] <x[°] 

1 -254 straight 

2 -203 straight 

3 -165 straight 

4 -140 straight 

5 -108 straight 

6 -7 straight 

7 18 1.5 

8 44 3.6 

9 69    . 5.6 

10 94 7.7 

11 120 9.8 

12 145     ... 11.9 

13 171 14.0 

14 221 18.1 

15 272 22.3 

16 323 16.4 

17 374 30.6 

18 425 34.8 

19 475 38.9 

20 577 47.2 

21 679 55.5 

22 780 63.9 

23 882 72.2 

24 983 80.5 
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Table 2.3        Summary of measurement uncertainties for 95% confidence interval 

y+=10 y+ -100 

aü ± 0.45 % ±0.41 % 

av ± 0.40 % ± 0.40 % 

<V ± 0.68 % ± 0.68 % 

<V ± 0.83 % ± 0.56 % 

a^ 
±7.15% + 5.26 % 
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Figure 2.2 Details of curved test section with (a) strong and (b) moderate curvature 
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Figure 2.4     Schematic of LDV transmitting and receiving optics 
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XLU^U'! 

Figure 2.6   Schematic of coordinate rotation and correction for non-orthogonality of 
velocity components 
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CHAPTER 3. RESULTS 

Streamwise and wall-normal profiles of mean and turbulence quantities in boundary 

layers with multiple strain rates are presented in this chapter. First, the integral parameters 

dP/ds, k, cf, and 0 are shown under various combinations of strain rates. Next, profiles of 

inner normalized mean streamwise velocity are presented. Finally, turbulent normal 

stresses and the primary Reynolds shear stress are shown under the different experimental 

conditions. The cases investigated are summarized in Table 3.1. Typical ranges for the 

acceleration parameter k, the momentum thickness Reynolds number Ree, and the pressure 

gradient ratio Prat=l^^ are: -0.5-10"6 <k<1.8-10"6, 3,500 < Ree < 10,500, and 
dP/dr 

0 < Prat < 1.2, respectively. All data sets presented here are compared to a ZPG boundary 

layer that formed over a smooth flat wall with Ree = 3250 and also with the DNS results of 

Spalart (1988). Note that in the curved portion of the boundary layer, the reference free: 

stream velocity is replaced by the potential velocity at the wall, Upw. 

3.1 Pressure Gradients and Integral Parameters 

In this investigation it was necessary to establish zero, as well as constant favorable 

and adverse pressure gradients of different magnitudes downstream of the onset of 

curvature. In Figure 3.1, the streamwise pressure gradient distribution is shown for both 

test sections» test section 1 (TS1) with 80/R = 0.10 (Figure 3.1a) and test section 2 (TS2) 

with S0/R ~ 0.05 (Figure3.1b). Nearly constant levels of pressure gradient were achieved 

over a significant portion of the convex wall for both test sections, except in the region 

immediately downstream of the onset of curvature, where a favorable pressure gradient 

prevailed for a short distance. As discussed in chapter 1, this pressure gradient arises from 

the discontinuity in wall curvature. To counteract this effect in the initial region of the 

curved test section, the flexible wall opposite to the measurement wall was carefully 

contoured. This led to a compensation of the pressure gradient immediately upstream and 

downstream of the onset of curvature. In the following chapter, details of the different 

shapes of the flexible wall, and the resulting pressure gradients, are discussed further, 
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especially with respect to the combined effects of streamwise and wall-normal pressure 

gradients. The streamwise distribution of the local acceleration parameter, 

k = v/Ue • dUe /ds, shown in Figure 3.2, exhibits the same trends (with opposite sign) as 

the pressure gradient. This parameter is a good indicator of how strongly the turbulence 

structure is affected, especially in regard to reverse transistion (relaminarization). It is well 

knownthat high levels of acceleration can result in boundary layer relaminarization (cf. 

Kline et al., 1967; Sreenivasan, 1979). 

The distribution of the local skin-friction coefficient in each test section is shown in 

Figure 3.3. Included are some of the upstream, flat-plate data which were acquired in the 

same facility by Koskie (1990) as well as computational results that were obtained from a 

finite difference boundary layer code (CBTSL by Cebeci and Bradshaw, 1977), which 

solves the thin-shear layer, partial differential equations. Despite the positive shift near the 

onset of curvature for both test sections (due to the locally strong FPG), the skin-friction 

coefficient is reduced over the convex wall in the presence of zero pressure gradient (ZPG) 

in both test sections. The degree of reduction is greater for the stronger curvature, since 

stronger convex curvature causes increased stabilization of the turbulent boundary layer 

(Gillis and Johnston, 1983). On the other hand, FPGs counteract the reduction caused by 

the convex curvature, whereas adverse pressure gradient (APG) augments the reduction of 

the skin-friction over the convex wall for TS1. This behavior is a clear indication that an 

interactive process is occurring between the two applied extra rates-of-strain. Similar 

observations were made in the skin-friction distribution measured in the investigation by 

Bandyopadhyay and Ahmed (1993). In that study, an S-shaped duct resulted in 

asymmetrical responses between the two walls, clearly implying the interaction of the radial 

and streamwise strain rate. Note that the strong FPG combined with the moderate convex 

curvature (TS2) counteracts the stabilizing effects of the curved wall more strongly than 

does SFPG with the strong curvature (TS1). 

Finally, the momentum thickness distribution along the measurement wall for all 

cases presented above is shown in Figure 3.4. The momentum thickness for flows over 

curved surfaces can be determined from an expression given by Simon and Honami (1981) 

JUpdn=j(up-U)dn (3.1) 
o o 

which yields 
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,.j|,^2ML. n^ 

R; u; 

As expected, the convex curvature causes an increase for the ZPG cases, and the growth is 

more pronounced for the stronger curvature (Figure 3.4a). This effect is counteracted in the 

presence of favorable pressure gradients and augmented for adverse pressure gradient. 

Spanwise variations of integral parameters were evaluated from single-component 

LDV measurements to check the mean two-dimensionality of the flow. Representative 

values of the skin-friction, displacement thickness, and potential wall velocity at five 

spanwise locations are listed in Table 3.2. The flow is reasonably two-dimensional at this 

streamwise location (a = 35°), where the largest variation of ± 5.1% occurred for the skin- 

friction coefficient. 

3.2 InitialRegion of Curvature with Streamwise ZPG and FPG 

In this section, the mean and fluctuating velocity and primary Reynolds stress 

profiles are presented with the emphasis on the region immediately downstream of the 

onset of curvature (within the first 20° of turning) to illustrate the effect of the abrupt 

change of surface curvature on the turbulent boundary layer. As discussed by Bradshaw 

(1973), the "memory time" of the stress-containing eddies in the outer portion of the 

boundary layer is approximately s - s0 = 10So. This distance corresponds to 55° of turning 

in TS1 and 30° for TS2. All profiles presented in this section were acquired within the first 

20° of both test sections. This is representative of the leading edge region of the suction 

(convex) side in a turbine vane passage, where the flow initially accelerates. Thus, the 

comparison between zero (ZPG) streamwise and strong favorable (SFPG) pressure 

gradients will be made. For all streamwise pressure gradient cases presented here, the 

flexible wall shape partially compensated the locally strong acceleration effects near the 

onset of curvature. 

Two-component velocity profiles were acquired at different streamwise locations 

along the convex wall in the mid-plane of the test section (z=0 mm) to document the 

downstream development of the TBL under streamwise zero and strong favorable pressure 

gradient. All of the data sets are compared to a ZPG boundary layer over a smooth flat wall 
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with Ree - 3250 and to the DNS results of Spalart (1988), where Ree = 1410. The shear 

velocity, uT, has been used for inner variable normalization. It was determined using the 

standard Clauser method, although the log-law must be used cautiously in curved TBLs 

(cf. Gibson, 1988; and Schwarz and Plesniak, 1996b). In this study, the classical 

constants (K = 0.41 and B = 5.0) were retained to evaluate the shear velocity, primarily 

because no direct measurements of the wall shear stress were available and to facilitate 

comparison to the vast body of previous work on curved boundary layers (e.g. So & 

Mellor, 1973; Smits et al, 1979; Gillis & Johnston, 1983; Muck et al, 1985; Barlow & 

Johnston, 1988a, b). It was estimated that the maximum change in uT using the modified 

constants proposed by Gibson (1988) is 5%. 

3.2.1 Mean Velocities 

In Figures 3.5 and 3.6 the streamwise development of the mean velocity profiles 

over a moderately (TS2) and strongly (TS1) curved convex wall with zero compensated 

(ZPGC) and strong favorable compensated (SFPGC) streamwise pressure gradients are 

shown. As previously reported by other investigators (e.g. Gillis and Johnston, 1983 and 

Gibson et al, 1984), the extent of the logarithmic region is reduced due to the presence of 

the convex curvature (30<y+ <100). The DNS results of Spalart (1988) represent the 

near-wall behavior of the data throughout most of the boundary layer very well. Note that 

the deviation of the current flat-plate data from the DNS results in the outer portion of the 

boundary layer is due to the higher Reynolds number of the present data set. 

The mean streamwise velocity is primarily affected outside the log-law region for all 

cases presented here. For the zero streamwise pressure gradient condition (Figure 3.5), the 

wake strength increases in the downstream direction. This behavior is more pronounced for 

the more moderate curvature case (Figure 3.5a). On the other hand, in the presence of a 

strong favorable pressure gradient, only small changes are observed in the outer portion of 

the boundary layer (Figure 3.6). Here, the favorable pressure gradient opposes the wake- 

enhancing effect of the convex curvature. 
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3.2.2 Fluctuating Velocity and Reynolds Stress Profiles 

In this section, the root-mean-square (RMS) streamwise and wall-normal velocities 

and the primary Reynolds shear stress profiles are shown for the same conditions that were 

discussed above. These quantities were all normalized using the local shear velocity, uT 

(raised to the appropriate power). The profiles for the ZPGC cases are presented (Figures 

3.7 through 3.9) before showing the results for the SFPGC cases (Figures 3.10 through 

3.12). 

The streamwise and wall-normal RMS velocities, shown in Figures 3.7 and 3.8 for 

the ZPGC case, collapse throughout the entire boundary layer at every streamwise location 

except for the first measurement station (a = 5 , Figure 3.7) for the moderate curvature 

case (50/R ~ 0.05) where both the streamwise and wall-normal RMS velocity are elevated 

relative to the downstream locations. The primary peak in the streamwise RMS velocities 

occurred at the same wall-normal distance (y+ ~ 15) as for the flat plate case. The increase 

of both components relative to the flat plate values and the DNS data in the outer portion of 

the TBL is attributable to a difference in Reynolds number. The main effect of the 

increasing Reynolds number is the growth (here in inner variables) of the TBL. 

In Figure 3.9, the primary Reynolds shear stress profiles exhibit similarity over the 

curved wall for the moderate wall curvature (Figure 3.9a) but change in the streamwise 

direction for the strong convex curvature (Figure 3.9b). In the latter case, there is a 

dramatic reduction in the primary Reynolds shear stress (uv ) outside the logarithmic 

region with respect to flat plate values at the farthest downstream location (a ~ 20 ). This 

effect has been reported by other investigators (e.g. So and Mellor, 1973, Gillis and 

Johnston 1983) and is attributed to the attenuation of the larger-scale structures in the outer 

portion of the boundary layer due to the strong stabilizing convex curvature. Chiwanga and 

Ramaprian (1993) showed that the size of the energy-containing eddies was dramatically 

reduced for a flow over a convex surface even with moderate curvature (their curvature 

parameter was 80 /R ~ 0.04). These eddies are reduced in size because the streamlines near 

the free-stream have a convex curvature and the resulting normal pressure gradient causes a 

reduction in the entrainment of the ambient fluid by the boundary layer. It is also apparent 

in Figure 3.9b that the stronger convex curvature causes an increased reduction of the 

primary Reynolds shear stress immediately downstream (a ~ 8 ) of the onset of curvature. 
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The combined effect of streamwise acceleration (SFPGC) along with convex 

curvature on the measured turbulent stresses is shown in Figures 3.10 through 3.12. These 

data illustrate that the favorable pressure gradient augments the Reynolds-stress-reducing 

effects of the convex curvature. The largest reduction in the RMS velocity profiles is 

observed for the moderate curvature case at the farthest downstream location, a = 20 

(Figure 3.10). For the same case, it is also noteworthy that for the initial streamwise 

evolution of uv , its peak value decreases downstream of the onset of curvature up to a ~ 

10 , after which it rebounds to an even higher value than at a ~ 5 . Streamwise changes in 

the uv profiles for the strong curvature case (Figure 3.12b) are not as dramatic as for the 

moderate convex curvature. At the first downstream location (a ~ 8 ), the peak value is 

slightly reduced in the constant stress region relative to the downstream locations. On the 

other hand, it remains elevated relative to the two downstream locations in the outer portion 

of the boundary layer, which is due to a remnants of the larger-scale eddy structures. 

3.3 Downstream Region of Curvature with Streamwise ZPG and FPG 

3.3.1 Mean Velocities 

In Figure 3.13, the mean normalized streamwise velocity component is shown to 

illustrate the downstream development of the TBL in the presence of a streamwise ZPG for 

the strong curvature case (50/R = 0.10). As discussed before, the extent of the log-law 

region is reduced (30 < y+ < 100) due to the presence of the strong convex curvature. All of 

the data, including the DNS data set by Spalart (1988), collapsed quite well in the near-wall 

region of the TBL and throughout the log-law region. Initially, the wake component in the 

outer portion of the TBL increased with downstream distance. There was no further change 

in the profiles between the 45° and 55° locations, indicating that a state of equilibrium was 

reached sufficiently far downstream of the onset of curvature. 
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3.3.2 Fluctuating Velocity and Reynolds Stress Profiles 

Profiles of the streamwise and wall-normal root-mean square (RMS) velocities, 

along with the primary Reynolds shear stress, shown in Figures 3.14 and 3.15, support 

the observations made for the mean streamwise velocity, namely that similarity is achieved 

by a ~ 45°. The RMS velocity components plotted in Figure 3.8 changed only slightly as 

the flowfield developed downstream. The primary peaks in the streamwise velocity, which 

occurred at the same wall-normal distance of y   -15, were reduced by 14% compared to 

those measured on the flat plate. The primary Reynolds shear stress, shown in Figure 

3.15, exhibits noteworthy features as well. Beyond the shortened logarithmic region, 

-uv/u^ is reduced relative to the flat plate values, which is attributable to the attenuation of 

the larger-scale structures in the outer portion of the boundary layer as discussed before 

3.4 Closing Remarks 

The results presented in this chapter document the importance of extra strain rates 

on the mean and turbulent statistics of the turbulent boundary layer. The convex curvature 

affected the turbulence immediately downstream of the onset of curvature and its effects are 

visible throughout almost the entire boundary layer. On the other hand, strong streamwise 

acceleration induced by a streamwise favorable pressure gradient (FPG), only modified the 

boundary layer mean and Reynolds stress profiles outside the log-law region. In the 

presence of FPG, the wake-enhancing effect of the convex curvature was counteracted, 

whereas the stabilizing effect on the turbulence was augmented. 

The issues of equilibrium and how the turbulence production cycle responds to the 

sudden introduction of extra strain rates are discussed in the next chapter. 
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Table 3.1 Summary of cases investigated (® indicates time-resolved, two-component 
velocity records) 

Strong Curvature (8/R « 0.10), TS1 

As; a/ 
PGrads kxlO6 8° 15° 20° 35° 45° 55° 
ZPGU 0.0 — — <8> ® — ® 
ZPGC 0.0 ® ® ® ® ® ® 
FPG 0.5 ® ® ® ® ® ® 
SFPG 1.0 ® ® (8) ® ® ® 
APG -0.5 ® ® ® ® ® ® 

Moderate Curvature (8/R = 0.05), TS2 

As; a/ 
PGrads kxlO6 

-550 -180 
0° 5° 10° 15° 20° 30° 

ZPGU 0.0 ® ® ® * ® ® ® ® 
ZPGC 0.0 ® ® ® ® ® ® ® ® 
SFPG 1.6 ® ® ® ® ® ® ® ® 

* no time-resolved data 

Table 3.2        Spanwise (z-direction) variation of integral parameters at a = 35 
under ZPG conditions 

z [mm] cfxl0J 5  [mm] Upw [m/s] 

-40 2.348 5.08 1.189 

-20 2.350 4.81 1.218 

0 2.438 4.46 1.214 

20 2.551 4.41 1.195 

40 2.444 4.98 1.188 
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SFPGC conditions 
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CHAPTER 4. ANALYSIS OF RESULTS AND DISCUSSION 

In this chapter, a detailed description and analysis of the structural features of a 

turbulent boundary layer that is subjected to two interacting extra strain rates will be. given. 

The main emphasis is on how these additional strain rates modify the mean and turbulence 

flow field. Special attention will be given to how the different strain rates interact with each 

other. First, a detailed discussion of the different wall shapes used to establish certain 

streamwise pressure gradients along the convex wall will be given. Then, the data are 

analyzed with respect to equilibrium criteria. The remainder of this chapter is devoted to 

discussion of the effect of the various experimental conditions on the mean and turbulence 

quantities and on the turbulence production cycle. 

4.1 Wall Shapes and Pressure Gradients 

In order to better understand the overall flow physics of turbulent boundary layers 

that are exposed to multiple extra rates of strain, it is necessary to closely investigate the 

response of the streamwise pressure gradient (PGrad) to a set geometry and the wall 

curvature. The primary goal in contouring the flexible wall opposite to the convex 

measurement wall was to establish nominally constant streamwise PGrads downstream of 

the onset of curvature. Unfortunately, it is not possible to introduce a step change in the 

streamwise PGrad due to limitations on the attainable shape of the flexible wall. Even if a 

step change in the flexible wall shape would have been feasible, the finite response time of 

the mean flow would preclude a step-change in pressure gradient. The objective of the 

analysis in this section was to investigate the mechanism by which multiple extra strain 

rates affect the mean flow field. In the following paragraph, the flexible wall shape and the 

resulting PGrads are discussed using measurements that were acquired in the moderate 

curvature (80/R ~ 0.05) test section. 

Different types of zero (ZPG) and strong favorable (SFPG) streamwise PGrads 

were employed. An important distinction is made between natural (ZPGN and SFPGN) 

and compensated (ZPGC and SFPGC) conditions. In the natural case, the flexible wall was 

not adjusted near the onset of curvature (both upstream and downstream). This led to a 

locally accelerated flow on the convex wall as reported by So and Mellor (1973). The effect 

was counteracted for the compensated case by widening the flow cross-sectional area near 

the onset of curvature. In both cases, the flexible wall in the curved region was adjusted to 



69 

yield a constant streamwise PGrad. For the third ZPG case (ZPGU), the wall correction 

was not employed upstream of the onset of curvature, but was applied downstream to 
* 

account for 8 . 

The different wall shapes and the resulting streamwise PGrads are shown in Figure 

4.1. The overall trend is that, except for a region near the onset of curvature (-5.5 80 < s-s0 

< 5.5 80), all PGrads are essentially constant sufficiently downstream of the onset of 

curvature. The total amount by which the flow area was increased to compensate for the 

local acceleration in the initial region was approximately 0.3 80 for the ZPG case and 0.2 

80 for the SFPG case. For the ZPGC case, the local favorable pressure gradient at the 

onset of curvature was reduced by a factor of 4.5 through careful contouring of the flexible 

wall. 
In Figures 4.2, 4.3 and 4.4, the wall shape, the wall slope and the streamwise 

pressure gradients are shown for the two cases separately (ZPG and SFPG), in order to 

gain further insight. The wall slope, Ah/As, was calculated from the wall shape using a 

first-order, forward-difference scheme. In Figure 4.2, the different Wall shapes for the two 

cases shown here clearly support the observations made earlier in this section. Here, the 

wall shapes are similar except for a region near the onset of curvature. By expanding the 

ordinate scale, it becomes evident that for both SFPG cases studied here, the downstream 

wall shapes are almost identical. In addition, there are two distinct regions with constant 

wall slopes for the SFPG cases, which are especially apparent in the wall slope distribution 

shown in Figure 4.3. In this figure, two regions with different constant wall slopes can be 

identified downstream of the onset of curvature with the transition occurring at s-s0 ~ 

0.35m or 10 80. This downstream distance is identical to that computed from the "memory 

time", X, (multiplied by convection velocity) of the energy-containing eddies (Bradshaw 

1973), and can be estimated from 

X =   ^\   Ü (4.1) 
-uvdU/dy 

where q2 = uü = u2 + v2 + w2 is the trace of the Reynolds stress tensor (twice the 

turbulent kinetic energy). For a linear interaction between the applied strain rates, it is 

expected that the wall shape employed to achieve a constant streamwise pressure gradient 

remains consistent, i.e. constant wall slope over the entire streamwise distance. However, 
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that behavior was not observed in the data, implying a non-linear interaction. In summary, 

the wall shapes needed to establish constant static pressure gradient distributions 

demonstrate that the interaction between the extra rates-of-strain (dV/ds and d\J/ds) is 

nonlinear. 

4.2 Equilibrium Boundary Layer Considerations 

A turbulent boundary layer becomes an equilibrium layer when the velocity profiles 

are independent of the Reynolds number and the downstream distance s, if non- 

dimensionalized using an appropriate velocity-defect law (Tennekes & Lumley, 1972). 

Strictly speaking, a given class of shear flows achieves some state of dynamical 

equilibrium, in which the local energy input should approximately balance the local loss 

(mostly through viscous dissipation), i.e. 

-uv^- + e«0 . (4.2) 
dy 

Equation (4.2)  governs the transport of turbulent kinetic energy for homogeneous, 

stationary turbulence (Hinze, 1975). 

The most common thickness parameter for equilibrium flows was determined by 

Clauser (White, 1974) and is defined as: 

U„-U 
A=fi^_^dy = 5\  t (4.3) 

0        T 

where X, = ^/2/cf. All velocity profiles can be scaled with y/A for a constant Clauser 

equilibrium shape factor given by: 

(4.4) 

The characteristic value for G is 6 to 7 in a ZPG equilibrium boundary layer. This 

parameter can be related to the conventional shape factor H (H = 8 / 6) by the following: 
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-l ,      ! 
H = |l-Xj    «G = ^l--    . (4.5) 

In an equilibrium boundary layer, the shape factor H varies with the downstream distance 

because the skin-friction is not constant even though G is. 

The departure and return to equilibrium can be described in a (G,ß)-plane, where 

the Clauser equilibrium parameter ß is the ratio of pressure to wall friction forces given by 

ß = 
($\ 

vTwy f' • 
The streamwise distribution of ß is shown for both convex curvatures in Figure 

4.5. It is obvious that the adverse pressure gradient acting along with the strong curvature 

never reaches equilibrium. On the other hand, ß tends to a constant value as the flow 

develops along the convex wall for all other cases. 

In Figure 4.6, the (G,ß) trajectories are shown for the different streamwise 

pressure gradients in both test sections. For the strong curvature case, shown in Figure 

4.6a, the trajectories for the ZPGC and APGC cases move away from the initial 

equilibrium, an effect which is most pronounced for the APGC case. In the presence of 

ZPGC and SFPGC, the boundary layer reaches a new equilibrium condition (with G = 

12.9 for ZPGC and G ~ 7.1 for SFPGC). It is surprising that for moderate curvature case 

(Figure 4.6b), G is rather far from equilibrium at the last measurement location (a = 30°) 

for both ZPG cases, whereas in the presence of SFPG, the trajectory tends to return to the 

initial equilibrium condition, in a non-linear fashion. The same trend can be observed for 

strong curvature case and SFPGC. A similar behavior was reported by Bandyopadhyay 

and Ahmed (1993) on both walls of an S-shaped duct. They termed this behavior an 

hysteresis of the large eddies. These authors also emphasized the importance not only of ß 

but also the effect of dß/ds when modeling turbulent boundary layers with streamwise 

pressure gradient. Note that dß/ds accounts for the application rate of the streamwise 

pressure gradient. The rate of application should also be important when streamwise 

pressure gradients are combined with radial strains. 
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4.3 Combined Strain Rates 

4.3.1 Effects of Different Streamwise Pressure Gradients 

In order to emphasize the effect of different streamwise pressure gradients and their 

interaction with the convex wall TBL, the data sets discussed below (mean velocity and 

Reynolds stress profiles) were acquired at one fixed streamwise location, a = 15° with 

different streamwise pressure gradients. As before, they are compared to a ZPG boundary 

layer that formed over a smooth flat wall with Ree = 3250 and the DNS results of Spalart 

(1988). In terms of the acceleration parameter k, the strengths of the imposed streamwise 

pressure gradients were k = 1.16xl0-6 for the strong compensated favorable pressure 

gradient (SFPGC), and k = -0.41xl0-6 for the moderate compensated adverse pressure 

gradient (APGC). 
In Figure 4.7, the mean streamwise velocity is shown as a function of the 

normalized wall-normal coordinate with zero, strong favorable and adverse streamwise 

pressure gradients at one fixed streamwise location (a = 15°). This particular streamwise 

distance was chosen because it is just downstream of the region that is influenced by a 

locally strong favorable pressure gradient due to sudden change in wall curvature. The 

mean profiles collapse quite well throughout the logarithmic region, whereas the wake 

component (outer portion of the turbulent boundary layer) is reduced with increasing 

strength of FPG, and elevated for APG. As previously reported by other investigators (cf. 

Gillis and Johnston, 1983; and Gibson, 1984) and in chapter 3, the extent of the 

logarithmic region was reduced with respect to a flat plate turbulent boundary layer 

(30<y+<100). Again, the near-wall behavior is very well represented throughout the 

logarithmic region by the DNS results of Spalart (1988). Favorable pressure gradient has 

the tendency to oppose the wake-enhancing effect of the convex curvature, whereas the 

APG increases the wake component even more. On the other hand, both convex curvature 

and FPG tend to stabilize the turbulence within the boundary layer, while APG acts to 

destabilize it. 
The streamwise and normal RMS velocities, along with the primary Reynolds shear 

stress (shown in Figures 4.8 and 4.9) illustrate some interesting features of the imposed 

extra rates of strain. The near-wall behavior (y+ < 50) of the normal stress components is 

almost entirely compensated by changes in uT when subjected to interacting strain rates of 
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different magnitude, except for a reduction of the primary peak in the streamwise RMS 

velocity relative to the measured flat plate values. Beyond the near-wall region, all 

Reynolds stress components are reduced relative to the flat plate values except in the wake 

region. This effect was augmented by the imposed SFPGC and counteracted by the APGC. 

Similar effects have been observed in flat plate turbulent boundary layers with different 

streamwise pressure gradients (cf. Koskie, 1991; and Smits et al, 1983). Another 

interesting trend can be seen in the different profiles of the primary Reynolds shear stress, 

shown in Figure 4.9. Outside the logarithmic region, this shear stress component is 

reduced relative to the flat plate values, an effect which has been observed by other 

investigators (cf. So and Mellor, 1972; Gillis and Johnston, 1983; and Chiwanga and 

Ramaprian, 1993). Apparently, the process is not yet completed at this measurement 

location even in the presence of a strong FPG. The effect of the different interacting 

streamwise pressure gradients on the primary Reynolds shear stress is noticeable 

throughout almost the entire boundary layer. In general, the SFPGC tends to reduce the 

turbulent shear stress correlation, whereas the APGC has the opposite effect. 

4.3.2 Pressure Gradient Ratios 

Two-component velocity data were acquired for different pressure gradient ratio 

(Prat) conditions in the mid-plane of the test surface. The data sets presented were acquired 

at a = 15° for zero and strong favorable streamwise pressure gradients. In the strong 

favorable pressure gradient cases (SFPG), typical values for the streamwise acceleration 

parameter k = v/U^dUe/ds were: k = 1.2xlCT6 for TS1 and k-1.8xl0~6 for TS2. 

These conditions correspond to a pressure gradient ratio of Prat = 0.73 for strong curvature 

(TS1) combined with SFPGC and 1.22 for moderate curvature (TS2) combined with 

SFPGC. 

In Figure 4.10, the mean streamwise velocity normalized with the shear velocity, is 

shown as a function of the normalized wall-normal coordinate in the typical fashion of the 

law of the wall. The largest increase of the wake component occurred when the longitudinal 

ZPG interacted with the convex curvature, especially for the moderate curvature case, 

whereas the strong FPG had the tendency to oppose the wake-enhancing effect of the 

stabilizing curvature. This effect was most pronounced in the moderate curvature case 

which corresponds to the high Prat case, whereas in the presence of the strong convex 
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curvature, the reduction of the wake component relative to the corresponding ZPG case 

was minimal. Thus, inner variable scaling accounts for the effects of the interacting strain 

rates in the inner region, and the mean velocity profiles collapse. The largest deviations are 

observed in the outer portion of the TBL, where inner scaling is not applicable. 

The streamwise and wall-normal root-mean square (RMS) velocities, along with the 

primary Reynolds shear stress component, shown in Figures 4.11 and 4.12 further 

illustrate the effects of the different pressure gradient ratios. The inner normalized RMS 

velocities, shown in Figure 4.11, exhibit some new features in addition to the ones 

discussed in section 4.3.1. For both curvature cases, the streamwise normal stress is 

reduced in the presence of favorable pressure gradients relative to the ZPG cases but this 

reduction is greater for the higher pressure gradient ratio. For the wall-normal RMS 

component, the same trends occur now throughout the entire boundary layer. 

Profiles of the .primary Reynolds shear stress, -uv, are shown in Figure 4.-12, 

where the effects of the interacting strain rates under different pressure gradient ratio 

conditions are obvious. The imposed favorable streamwise pressure gradient, coupled with 

convex curvature, further reduces -uv throughout almost the entire TBL. This effect is 

consistent for both curvature cases. It is noteworthy that the reduction in the outer portion 

(y+ > 50) of the boundary layer is greater for the higher Prat case, i.e. moderate curvature 

combined with SFPGC. The stabilizing effects of the different strengths of curvature can 

also be observed in the outer portion of the Reynolds stress profiles. Comparing both ZPG 

cases with different curvatures, the destruction of the energy-containing eddies is more 

advanced in the case of the stronger convex curvature, resulting in greater suppression of 

-uv in the outer portion of the TBL. In summary, streamwise acceleration of the turbulent 

boundary layer combined with moderate convex curvature yields stronger stabilization of 

the TBL than an accelerated flow (same magnitude FPG) combined with strong convex 

curvature. 
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4.4 Turbulence Production Cycle 

4.4.1 Turbulent Bursting Period 

In Figure 4.13, the mean burst period normalized with inner variables 

(TB=TB-U^/V) is shown for both curvature cases as a function of the streamwise 

distance along the convex wall for ZPG (both compensated and uncompensated), FPGCs, 

and APGC. For the strong curvature case (Figure 4.13a), the burst period was elevated 

immediately downstream of the onset of curvature (less frequent bursting), and even 

further elevated in the presence of favorable pressure gradients. On the other hand, it was 

reduced for the adverse pressure gradient, indicating a more frequent occurrence of these 

events. The same trends were also observed for mixed and outer normalization of the burst 

period (Schwarz & Plesniak, 1996a). The (inner normalized) burst period was 18% greater 

at a = 15° (s-s0 = 105 mm) for the strongest FPGC case (SFPGC) compared to the ZPGC 

case. In addition, the duration of ejections became shorter in the presence of SFPGC: The- 

(inner normalized) duration times for ejections at four different stations for all streamwise 

pressure gradients are listed in Table 4.1. It clearly shows that the duration decreases in the 

presence of favorable streamwise pressure gradients. The values shown in table 4.1 

correspond to a particular threshold value of H=0.2 but the trends are the same for the 

entire threshold independent range. Thus, because bursts are less frequent and of shorter 

duration upstream of the initial region (a < 20°), FPGC in the convex turbulent boundary 

layer is associated with a suppression of the turbulence production cycle. Although the 

difference in the (inner normalized) burst period decreased with downstream distance, the 

combination of the strong curvature with strong FPGC resulted in an increased stabilization 

of the turbulent boundary layer throughout the measurement domain (28% at 55°, s-s0 = 

384 mm). Different levels of FPGC were found to suppress the turbulence production 

cycle to some extent, complementing the stabilizing effect of convex curvature. 

On the other hand, the interaction of the strong convex curvature with APGC had 

the opposite effect. Especially in the initial curved wall region (but even up to a = 35°, s-s0 

= 244 mm), the burst period was reduced relative to the ZPGC values. In any case, the 

turbulent burst period remains elevated in the initial region, immediately downstream of the 

onset of curvature, which is attributed to the sudden change in surface curvature and the 

associated local FPG. However, in the presence of APGC, the ejection duration is reduced 
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compared to all other cases along the entire test surface, as shown in Table 4.1. This 

perhaps surprising behavior can be linked to the initially strong application rate of the 

streamwise strain rate, causing a reduction in the duration of uv2 events, accompanied with 

more frequent occurrence of the bursting events. Overall, APGC is associated with 

increased turbulence production, which coincides with an increase of the primary Reynolds 

shear stress, despite the fact that the ejection duration of the detected events was reduced. 

Therefore, an important result of this study is that not only the magnitude but also the rate 

of application of the strain rate dictates the state of the turbulence throughout the 

measurement domain. 
In Figure 4.13b, the burst periods for the moderate curvature case are shown. Also 

included is the value for the upstream flat plate reference station. In this case, data are 

shown for three different streamwise pressure gradient distributions, two zero 

(compensated and uncompensated) and strong favorable pressure gradient (SFPGC). The 

uncompensated zero pressure gradient (ZPGU) exhibits a stronger local acceleration at the 

onset of curvature compared to the compensated case (ZPGC), because the flexible wall 

opposite the measurement wall was not compensated to counteract the initial acceleration. 

As in the strong curvature case, the burst period is elevated near the onset of curvature due 

to the stabilizing nature of the local favorable pressure gradient. The burst period decreases 

monotonically downstream for both ZPGs. On the other hand, a dramatic increase in TB 

occurs initially in the presence of the SFPGC, reaching a maximum at a = 15° (s-s0 = 183 

mm). This trend is completely opposite to that observed for the strong curvature case, 

where the burst period decreased monotonically after reaching a maximum value 

immediately downstream of the onset of curvature. In comparison with Figure 4.13a, it is 

evident that the turbulence production cycle experiences a higher suppression when 

SFPGC and moderate curvature are combined. Recall, that the ratio of the streamwise 

(SFPGC) to radial pressure gradient, Prat, is 1.22 for the moderate and 0.73 for the strong 

convex curvature. 

The inner normalized duration of ejection events for the moderate curvature data, 

shown in tables 4.1 and 4.2, support the bursting period trends except for the anomalous 

APGC discussed above. In general, the ejection duration is shorter in the presence of 

SFPGC than for either ZPG case. This indicates that the strong favorable pressure gradient 

has a stabilizing effect on the turbulent boundary layer when combined with a more 

moderate convex curvature and it is in good agreement with the Reynolds stress 

measurements. Overall, the analysis of the turbulence production cycle in terms of the burst 

period and ejection duration has shown that both extra rates of strain (streamwise and wall- 
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normal) affect the near-wall dynamics of the turbulent boundary layer, and that the 

application rate in conjunction with the magnitude of the newly applied strain rates have to 

be considered when interpreting these results. 

4.4.2 Reynolds Stress Production Terms 

As reported in section 4.3.2, changes in the pressure gradient ratio have a 

significant effect on the Reynolds stresses and on the turbulence production cycle. In order 

to examine this behavior further, the dominant production terms for the streamwise normal 

Reynolds stress and the primary Reynolds shear stress for the same cases are discussed 

next. For a curved boundary layer, the production terms for the streamwise normal and 

primary Reynolds shear stress are (cf. Prabhu and Rao, 1981; and Bradshaw, 1973) 

(?)- Prod u    =-uv 
dy 

(4.7) 

and 

    ITT   

Prod(-uv) = v2^-hU v      '        ay 
2u2-v2 (4.8) 

where h = l + y/R. 

These quantities are plotted in Figure 4.14 using inner normalization. They are 

compared with the measured flat plate data and the DNS data of Spalart (1988). The 

profiles for the production of the streamwise normal Reynolds stress (Figure 4.14a) are 

essentially identical to each other and to the flat plate data throughout the entire boundary 

layer. Small differences are noticeable outside the log-law region, where streamwise 

favorable pressure gradient augments the stabilizing effect of the convex curvature as 

already seen in the Reynolds stresses (Figures 4.11 and 4.12). On the other hand, the 

production for the primary Reynolds shear stress, shown in Figure 4.14b, exhibits some 

interesting features. As expected, the production of -uv is reduced in the same portion of 

the boundary layer as the primary Reynolds shear stress. 

Combined with the results from chapter 3, these data indicate that the applied extra 

rates-of-strain effects on the near-wall region of the turbulent boundary layer are completely 
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scaled by changes in uT, and that the flow field is most obviously affected in the outer 

portion of the boundary layer. Since the turbulence bursting period shows significant 

changes for the different cases discussed, these results suggest that the bursting 

phenomenon is controlled by the dynamics of the entire boundary layer. Furthermore, they 

imply that the production cycle mechanisms are closely coupled with the applied strain 

rates. 
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Table 4.1 Inner normalized ejection duration Alg = ATEU^ / v for different streamwise 
pressure gradients (H=0.2) with 80 /R « 0.10 

Case a =15° a-20° a = 35° a-55° 

APG 1.45 1.70 1.71 1.78 

ZPG 1.95 2.17 2.33 2.13 

FPG 2.05 2.02 2.18 2.13 

SFPG 1.68 1.88 2.04 2.07 

Table 4.2        Inner normalized ejection duration Ax^= ATEU^ / v for different streamwise 
pressure gradients (H=0.2) with 80 /R ~ 0.05 

Case cc = 0° a =10° a =15° a = 20° a = 30° 

ZPGU 2.43 2.12 1.94 1.83 1.49 

ZPGC 2.13 1.87 1.93 1.83 1.75 

SFPG 2.16 1.64 1.73 2.02 1.56 
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Figure 4.10     Mean streamwise velocity profiles for TS1 and TS2 under different 

streamwise pressure gradient conditions at a ~ 15 
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CHAPTER 5. APPLIED STRAIN RATE EFFECTS 

5.1 Combined Strain Rate Effects on Skin-Friction Coefficient 

To further examine the effect of combined strain rates on the turbulence structure, 

correlations between a standard integral parameter (i.e. wall-shear stress or skin-friction 

coefficient, cf) and the bursting period were examined. These parameters were chosen 

because cf depends upon the wall shear stress, Tw = \i 9U/3y|   0, which is affected by 

extra strain rates, i.e. -U/R and 9U/3s. 

In Figures 5.1 through 5.3, the time between bursts (normalized using inner and 

outer variables) as a function of the skin-friction coefficient are shown for all applied 

streamwise pressure gradients and curvatures, i.e. both curvature cases (TS1 and TS2) and 

all streamwise pressure gradients. The inner and outer normalized burst period are defined 

as follows: 

Tß.in TR
+ = 

TBu? 

lB,out 
_TBUe 

e 

(5.1) 

(5.2) 

A Buckingham-Pi analysis (Fox and Mc Donald, 1985) was performed to determine non- 

dimensional grouping. Evaluating the n groups for cf =f(Ue,9,p,TB,(X,5 ) with Ue, 9, 

and p as the primary dimensions leads to the following relation: 

n,= 
0.5 pUl 

= f 
TBUe H 

^  e     Puee   e 
(5.3) 

or 

Cf = f(TB)0Ut,Ree\ H) (5.4) 
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Equation 5.4 shows that the skin-friction coefficient changes proportionally to the outer 

normalized burst period as well as the shape factor, and it is inversely proportional to the 

momentum thickness Reynolds number. A similar exercise was repeated using a inner 

region velocity and length scale, i.e. uT and uT /v, to show that the skin-friction coefficient 

also scales with inner-normalized bursting period (TBin). 

In Figures 5.1 and 5.2 the skin-friction coefficient is shown as a function of the 

inner (Figure 5.1) and outer (Figure 5.2) normalized burst period for the strong (TS1) and 

moderate (TS2) convex curvature case. In all cases, the general trend is a monotonic 

increase in the skin-friction coefficient with increasing burst period. Generally, an increase 

in the bursting period is also accompanied by a decrease in the ejection duration, as 

mentioned in chapter 4. These observations imply that the skin friction becomes elevated as 

the turbulence production cycle (TPC) is reduced. At a first glance, this is perhaps 

surprising because it is expected that an increase of the burst period is associated with a 

more stabilized boundary layer. However, the elevation in the skin friction is associated 

with a turbulent boundary layer that undergoes streamwise acceleration, which has a 

stabilizing effect on the turbulence production.- In Figure 5.3, results for both test sections 

are combined. These results show how the skin-friction coefficient is directly related the 

bursting period for all strain rate cases, independent of whether the burst period is 

normalized using inner or outer variables. Two data points, which correspond to the most 

downstream APG data (a ~ 45 and 55 ) for TS1, clearly fall outside of the general trends 

observed, which can be attributed to the boundary layer being far away from equilibrium 

conditions as seen in the previous chapter. It was shown in this section that the skin- 

friction coefficient is simply coupled to the burst period for a complex turbulent boundary 

layer. 

5.2 Strain Rate and Reynolds Stress Tensor Principal Axes 

As pointed out in chapter 1, Spalart and Shur (1997) proposed an eddy-viscosity 

turbulence model that accounts for system rotation and streamline curvature. Their proposal 

of a Galilean-invariant quantity to dispose of -U/ r led to an expression for the Lagrangian 

derivative of the angle of the strain rate principal axis, ocSR (Equation 5.5). In this section, 

the principal axes angles for both the strain rate tensor and the Reynolds tensor, aReS, are 
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presented to examine the Spalart and Shur (1997) model. The equations for the principal 

axes angles for a two-dimensional flow are: 

a SR 
1 

= —atan 
-2SC 

Snn     Sss 
(5.5) 

a ReS = —atan 
-2 uv 

—2     ~2 U   -v 
(5.6) 

The wall-normal diagonal strain rate component was determined from the measurements of 

the wall-normal velocity, V, whereas the streamwise diagonal strain rate component was 

inferred using the continuity equation for (s,n) coordinate system according to 

3U 
3s 

_a_ 
3n 

Trf.    n 
V 1 + 

R) %%&&%• " ""'''JR& 

In this approximation, the spanwise derivative of the z-component of the mean velocity 

(W) was neglected. As discussed in chapter 3 and shown in Table 3.2, it was reasonable 

to assume locally two-dimensional flow. 

In Figure 5.4, the principal axes for the strain rate and the Reynolds stress tensor 

are shown for the same data sets discussed in chapter 4.3.2 to illustrate the effect of 

different strain rate ratios on the structural features of the boundary layer. For a plane 

constant shear, the principal axis is aSR = 45°, but the principal axes of the Reynolds stress 

tensor are not aligned with those of the strain rate tensor for non-homogeneous turbulence 

(Gence and Mathieu, 1979). In Figure 5.4a, no major trends are apparent in the wall- 

normal profile of the strain rate tensor principal axes. The high "noise" level in the data is 

due to uncertainties that arise from evaluating the different strain rate tensor components, 

especially the normal components Sss and Snn. 

The angle of the principal axes of the Reynolds stresses can be interpreted as an 

indirect measure for how well the velocity fluctuations in the streamwise and wall-normal 

direction are correlated with each other, and also the degree to which the flow is locally 

isotropic, i.e. u2-v2 =>0. Both trends would increase the magnitude of the Reynolds 

stress principal axes. The Reynolds stress principal axes angle, ocReS shown in Figure 5.4b 
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is unaffected by the interacting strain rates inside the log-law region (y < 100). In the outer 

portion of the TBL, the ZPGC case with strong convex curvature (TS1) shows the largest 

reduction of ocReS relative to flat plate values. This behavior is consistent with the highest 

local application rate of newly introduced strain rates especially in the streamwise direction 

(Figure 3.1). The strain rate and Reynolds stress orientation results imply the violation of 

the Boussinesq approximation, which requires the principal axes of these tensors to be 

aligned. One of the major shortcomings of standard turbulence models (e.g. k-e model) is 

the use of an isotropic scalar eddy viscosity. 

To demonstrate the behavior of ocReS further, its streamwise evolution immediately 

downstream of the onset of curvature for ZPGC and SFPGC in TS2 is shown in Figure 

5.5. Here, the angle of the principal Reynolds shear stress tensor axes is immediately 

suppressed for the ZPGC case (Figure 5.5a), but remains essentially unchanged for the 

SFPGC case! The same trend for a zero pressure gradient turbulent boundary layer forming 

over a convex wall has been predicted by Hong and Murthy (1986), who developed the 

Large Eddy Interaction Model (LEIM), a finite velocity transport approach which is an 

alternative-to the more frequently used simple gradient diffusion hypothesis. They found 

that the angle of the principal axes of the stress decreased with convex curvature. As 

before, the TBL for the ZPGC case is exposed to a rapidly changing application rate of 

streamwise acceleration / deceleration causing ocReS to be reduced. These results 

demonstrate that the rate of application of the newly applied strain rates is as least as 

important as the magnitude of the strain rates itself. 

5.3 Total Combined Strain 

The concept of total or combined effective strain rates has been investigated in the 

past (cf. Maxey, 1982; and Sreenivasan, 1985). Sreenivasan (1985) suggests that the 

turbulence structure at any given stage is completely determined by the local value of the 

total strain parameter 

ßTS'=j»TE(f)dt (5'8) 



98 

if the applied mean shear is sufficiently large. Here TE is the typical lifetime of the large 

eddy (also eddy turnover time) which is on the order of l/3q2/e in equilibrium. Hence, 

the large-eddy lifetime can be viewed as the ratio of the turbulent kinetic energy to the 

isotropic turbulent dissipation rate. This quantity is essential identical to what Bradshaw 

(1973) denoted as the memory time in Equation 4.1 (divided by the convection velocity, 

Ü). Note that this approach is strictly correct only for equilibrium flows. For the two- 

component data, an estimate for the total strain parameter can be found by expressing the 

large eddy lifetime in terms of measured quantities according to 

i      u2 + v2 

T  « i   _ . t_ r (5.9) 
E    2-uv(aU/9y) 

for a flat plate boundary layer, and 

TE.-d-2-^(aUü/+ay-Ü/r) (5'10) 

for flow over convex wall. Hence, the local total strain parameter can be calculated from 

ay     2   -uv 

and 

B ~T       
aU     lu2 + y2      *- (5 12) (Wad ~ TE>rad dy ~ 2    _-    {_s^ (5.12) 

U/r 
respectively, where Srad = —=  is the curvature strain rate ratio. The total strain 

3U/8y 

parameter can also be interpreted as the ratio of the large-eddy lifetime to a distortion time 

scale. This ratio is a useful measure to determine whether or not the flow should be treated 

as a rapidly distorted flow. In rapid distortion theory (RDT), the governing equations can 
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be linearized under the assumptions that the turbulence is weak (u' « U) and that the 

distortion time is far less than a typical integral time scale, or in other words, ßTSt» 1 (see 

Savill, 1987). 
In Figure 5.6, the estimated total strain parameter is shown as a function of the 

inner normalized wall-normal coordinate for the initial region in TS2 under ZPGC (Figure 

5.6a) and SFPGC (Figure 5.6b) conditions. The profiles for the flat plate and the DNS data 

sets are included for comparison. There is good agreement between all data sets for the 

inner, near-wall region, as seen previously. Outside the log-law region (y > 100), the total 

strain parameter becomes elevated as soon as the flow enters the curved portion of the test 

section. This trend is independent of the applied streamwise strain rate. 

In order to gain a better understanding, the streamwise variation of the total strain 

parameter in the outer portion of the boundary layer (y/5 = 0.4 as suggested by 

Sreenivasan, 1985) is examined. Figure 5.7 shows the streamwise development under 

different conditions, i.e. moderate convex curvature (TS1) with different streamwise 

pressure gradient in Figure 5.7a, and both curvature cases with zero, favorable and adverse 

(only forTSl) streamwise pressure gradients in Figure 5.7b. The trends are striking. For 

both curvature cases, the total strain parameter is elevated immediately downstream of the 

onset of curvature, relative to the flat plate values. Note that the equilibrium value for 

homogeneous plane shear flow is approximately 4.5 (see Sreenivasan, 1985). However, 

this value is magnified by approximately a factor of 4 for the strong curvature case. It is 

still questionable whether or not the flow reaches a new, higher total strain parameter 

(approximately 5.5 for TS2 and 13.0 for TS1), especially in the case of strong convex 

curvature. This information would be valuable in assessing the modified turbulence 

structure for curved boundary layer flows. 

The following interpretation of these results is proposed. The nonlinear cascade 

process describes the interaction of the different size eddies, where it is assumed that the 

large, energy-containing eddies lose their energy to somewhat smaller eddies, which in turn 

lose their energy to still smaller eddies all the way down to the smallest scale eddies, which 

finally dissipate the energy by viscous interaction. It is this last stage that is described by 

the isotropic dissipation rate £, which is an integral part of a variety of turbulent models 

(see van den Berg, 1984). However, the rate of dissipation is determined by the first few 

stages of the cascade process, i.e. by the large eddies. In addition, the effectiveness at 

which the large eddies extract energy from the mean shear flow is believed to be linked to 

how well the principal axes of vorticity is aligned with that of the mean strain rate 
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(Tennekes and Lumley, 1972). Any mechanism that would suppress or even inhibit the 

initial stage in the nonlinear cascade process, or any mechanism that would affect the 

dynamic interaction between the turbulence and the mean flow, would instantly result in a 

variation of e, which would cause the total strain parameter to change. 

In a direct numerical simulation (DNS) of an elliptical shear flow by Blaisdell and 

Shariff (1996), which combines a homogeneous turbulent flow with the effects of solid 

body rotation and strain, it was found that the nonlinear cascade process was suppressed 

for early times. This effect was enhanced for stronger rotation, whereas it recovered as the 

flow field developed further in time. The relationship to the present results is as follows: 

The newly applied extra rates of strain at the onset of curvature have a significant effect on 

the turbulence structure of the developing boundary layer. Immediately downstream of the 

onset of curvature, the turbulence production cycle is inhibited and the total strain parameter 

is elevated. Equation 5.13 shows how the total strain parameter is related to the TKE and 

the turbulence dissipation rate. 

ßtsr.«-7T (5-13) 
e ay 

Since the data show that neither the TKE nor the mean shear rate are significantly altered 

when the additional strains are imposed, the increase in ß results from a reduction of the 

turbulence dissipation rate e. This, in turn, implies that either the nonlinear cascade transfer 

process is inhibited or the dynamic interaction between the turbulence and the mean flow is 

affected. This behavior can only be caused by the abrupt change in wall curvature, and it 

was more pronounced for stronger convex curvature. 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Conclusions 

In this study, detailed measurements have been made and analyzed to examine the 

response of a turbulent boundary layer to multiple strain rates. The turbulent boundary 

layer was exposed to multiple, extra rates of strain due to streamline curvature and 

streamwise pressure gradients. The measurements allowed examination of the entire 

turbulent production cycle including near-wall region, with the emphasis on whether these 

additional strains would interact with each other and how the turbulent production cycle 

would be affected. 
It was evident from the results that the two extra strain rates not only interacted with 

each other, but that their interaction was nonlinear. For the strong curvature case (80/R = 

0.10), the TBL reached a state of similarity, as inferred from the collapse of the mean and 

fluctuating velocities for both zero and favorable streamwise pressure gradients. However, 

in the presence of an adverse pressure gradient, ho similarity was achieved. For the 

moderate curvature case, the TBL had not reached a similarity state at the last measurement 

station (a ~ 30°). 

The outer portion of the boundary layer (outside the log-law region, i.e. y > 100 

for convex TBL) was more strongly affected by the extra applied strain rates than the inner 

layer. Strictly speaking, physical changes of the near-wall quantities were compensated by 

the local shear velocity ut, whereas variations in the outer portion of the boundary layer 

were not. Stabilization of the boundary layer turbulence due to convex curvature was 

augmented by favorable pressure gradient and counteracted by adverse pressure gradient. 

The effect of the different interacting strain rates on the turbulence production cycle, 

which was characterized by the turbulent bursting period, the ejection duration and specific 

terms in the Reynolds transport equations, was strongest in regions of rapidly changing 

newly introduced strain rates, i.e. at the onset of curvature. The turbulence production 

cycle was reduced in regions of locally strong accelerated flow, a trend which was more 

pronounced for higher pressure gradient ratios, i.e. moderate curvature in combination with 

strong favorable pressure gradient. The turbulent bursting period can be directly correlated 

to the skin-friction coefficient as demonstrated by analysis of the relevant non-dimensional 
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IT groups and supported by the measurements. Using both inner and outer normalization 

for the burst period successfully implies the importance of both the inner and outer layer in 

the bursting process. 
The energy-containing structures in the turbulent boundary layer were affected 

immediately downstream of the onset of curvature, i.e. reduction of the Reynolds stress 

principal axes and increase in the total strain parameter. An increased application rate of the 

newly introduced extra strain rates (wall-normal and streamwise) resulted in a larger 

variation of the turbulent bursting period and the total strain parameter. The resulting 

suppression of the nonlinear cascade process in conjunction with a reduction of the 

turbulence production cycle emphasizes the importance of the inner / outer layer dynamics. 

6.2 Recommendations for Further Studies 

It has become clear that the application rate of the newly applied extra rate-of-strain 

is critical to determine the effects on a turbulent boundary layer. Therefore, it is necessary 

to carefully define a quantity that adequately represents the different application rates in 

terms of measurable quantities, e.g. distribution of wall static pressures. Also, additional 

studies with various step changes in the streamwise pressure gradient that occur 

simultaneously with the step change in wall curvature or lag/lead the wall curvature change 

would give a deeper insight into the interaction process between the extra strain rates. 

Spectral information of the velocity fluctuations would be a great asset in further 

investigating the outer layer dynamics of the turbulent boundary layer, especially in regions 

of rapidly changing boundary conditions, i.e. transition from flat to curved surfaces. The 

information on the large-scale structure would not only assist in supporting our main 

conclusions, but it would also help to test whether rapid distortion approximations are 

reasonable. This information could be used in modifying present turbulence models that are 

based on the RDT approach. In regard to developing reliable turbulence models for 

complex turbulent boundary layers, it is suggested to combine a RDT type model for the 

outer portion of the boundary layer in combination with a standard, near-wall gradient- 

diffusion type model, i.e. Reynolds stress or k-e. 

Additional measurements of the third (spanwise) velocity components including the 

respective cross correlations is important to not only check the two-dimensionality of the 

flow field, but also to attain all components of the Reynolds stress and strain rate tensors. 
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Finally, detailed measurements of selected combinations of multiple strain rates 

under thermal boundary layer conditions have to be conducted to investigate how changes 

in the momentum transport affect the temperature fields under complex flow conditions. 

These experiments are necessary to address the nonlinear manner in which turbulence and 

turbulent heat transport respond to a three-dimensional strain field in wall-bounded flows. 

Combined with the results found in this study, it should be possible to make a major leap 

forward in the understanding and determination of convective heat transfer between the 

working fluid of a turbine and the material surfaces. 
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